
In this shear mapping the red arrow changes

direction but the blue arrow does not. Therefore

the blue arrow is an eigenvector, with

eigenvalue 1 as its length is unchanged.

Eigenvalues and eigenvectors
From Wikipedia, the free encyclopedia

The eigenvectors of a square matrix are the non-zero vectors which,

after being multiplied by the matrix, remain proportional to the original

vector (i.e. change only in magnitude, not in direction). For each

eigenvector, the corresponding eigenvalue is the factor by which the

eigenvector changes when multiplied by the matrix. The prefix eigen-

is adopted from the German word "eigen" for "innate", "own".
[1]

 The

eigenvectors are sometimes also called proper vectors, or

characteristic vectors. Similarly, the eigenvalues are also known as

proper values, or characteristic values.

The mathematical expression of this idea is as follows: if A is a square

matrix, a non-zero vector v is an eigenvector of A if there is a scalar λ

(lambda) such that

The scalar λ (lambda) is said to be the eigenvalue of A corresponding to v. An eigenspace of A is the set of all

eigenvectors with the same eigenvalue together with the zero vector. However, the zero vector is not an

eigenvector.
[2]

These ideas are often extended to more general situations, where scalars are elements of any field, vectors are

elements of any vector space, and linear transformations may or may not be represented by matrix multiplication. For

example, instead of real numbers, scalars may be complex numbers; instead of arrows, vectors may be functions or

frequencies; instead of matrix multiplication, linear transformations may be operators such as the derivative from

calculus. These are only a few of countless examples where eigenvectors and eigenvalues are important.

In such cases, the concept of direction loses its ordinary meaning, and is given an abstract definition. Even so, if that

abstract direction is unchanged by a given linear transformation, the prefix "eigen" is used, as in eigenfunction,

eigenmode, eigenface, eigenstate, and eigenfrequency.

Eigenvalues and eigenvectors have many applications in both pure and applied mathematics. They are used in matrix

factorization, in quantum mechanics, and in many other areas.
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Definition

Prerequisites and motivation

Eigenvectors and eigenvalues depend on the concepts of vectors and

linear transformations. In the most elementary case, vectors can be

thought of as arrows that have both length (or magnitude) and direction.

Once a set of Cartesian coordinates are established, a vector can be

described relative to that set of coordinates by a sequence of numbers. A

linear transformation can be described by a square matrix. For example, in

the standard coordinates of n-dimensional space a vector can be written

A matrix can be written

Here n is some fixed natural number.

Usually, the multiplication of a vector x by a square matrix A changes both the magnitude and the direction of the

vector upon which it acts; but in the special case where it changes only the scale (magnitude) of the vector and leaves

the direction unchanged, or switches the vector to the opposite direction, then that vector is called an eigenvector of

that matrix (the term "eigenvector" is meaningless except in relation to some particular matrix). When multiplied by a
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matrix, each eigenvector of that matrix changes its magnitude by a factor, called the eigenvalue corresponding to that

eigenvector.

The vector x is an eigenvector of the matrix A with eigenvalue λ (lambda) if the following equation holds:

Geometrically, the eigenvalue equation can be interpreted as follows: a vector x is an eigenvector if multiplication by

A stretches, shrinks, leaves unchanged, flips, flips and stretches, or flips and shrinks x. If the eigenvalue λ > 1, x is

stretched by this factor. If λ = 1, the vector x is not affected at all by multiplication by A. If 0 < λ < 1, x is shrunk (or

compressed). The case λ = 0 means that x shrinks to a point (represented by the origin). If λ is negative then x flips

and points in the opposite direction as well as being scaled by a factor equal to the absolute value of λ.

As a special case, the identity matrix I is the matrix that leaves all vectors unchanged:

Every non-zero vector x is an eigenvector of the identity matrix with eigenvalue 1.

Example

For the matrix A

the vector

is an eigenvector with eigenvalue 1. Indeed,

On the other hand the vector

is not an eigenvector, since

and this vector is not a multiple of the original vector x.

Formal definition

In abstract mathematics, a more general definition is given:

Let V be any vector space, let x be a vector in that vector space, and let T be a linear transformation mapping V into

V. Then x is an eigenvector of T with eigenvalue λ if the following equation holds:

This equation is called the eigenvalue equation. Note that Tx means T of x, the action of the transformation T on x,
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while λx means the product of the number λ times the vector x.
[3]

 Most, but not all 
[4]

 authors also require x to be

non-zero. The set of eigenvalues of T is sometimes called the spectrum of T.

Eigenvalues and eigenvectors of matrices

Characteristic polynomial

Main article: Characteristic polynomial

The eigenvalues of A are precisely the solutions λ to the equation

Here det is the determinant of matrices A and I is the n×n identity matrix. This equation is called the characteristic

equation (or less often the secular equation) of A. For example, if A is the following matrix (a so-called diagonal

matrix):

then the characteristic equation reads

.

The solutions to this equation are the eigenvalues λi = ai,i (i = 1, ..., n).

Proving the afore-mentioned relation of eigenvalues and solutions of the characteristic equation requires some linear

algebra, specifically the notion of linearly independent vectors: briefly, the eigenvalue equation for a matrix A can be

expressed as

which can be rearranged to

If there existed an inverse

then both sides could be left-multiplied by it, to obtain x = 0. Therefore, if λ is such that A − λI is invertible, λ cannot

be an eigenvalue. It can be shown that the converse holds, too: if A − λI is not invertible, λ is an eigenvalue. A

criterion from linear algebra states that a matrix (here: A − λI) is non-invertible if and only if its determinant is zero,
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thus leading to the characteristic equation.

The left-hand side of this equation can be seen (using Leibniz' rule for the determinant) to be a polynomial function in

λ, whose coefficients depend on the entries of A. This polynomial is called the characteristic polynomial. Its degree is

n, that is to say, the highest power of λ occurring in this polynomial is λ
n
. At least for small matrices, the solutions of

the characteristic equation (hence, the eigenvalues of A) can be found directly. Moreover, it is important for

theoretical purposes, such as the Cayley-Hamilton theorem. It also shows that any n×n matrix has at most n

eigenvalues. However, the characteristic equation need not have n distinct solutions. In other words, there may be

strictly less than n distinct eigenvalues. This happens for the matrix describing the shear mapping discussed below.

If the matrix has real entries, the coefficients of the characteristic polynomial are all real. However, the roots are not

necessarily real; they may include complex numbers with a non-zero imaginary component. For example, a 2×2

matrix describing a 45° rotation will not leave any non-zero vector pointing in the same direction. However, there is at

least one complex number λ solving the characteristic equation, even if the entries of the matrix A are complex

numbers to begin with. (This existence of such a solution is known as the fundamental theorem of algebra.) For a

complex eigenvalue, the corresponding eigenvectors also have complex components.

Eigenspace

If x is an eigenvector of the matrix A with eigenvalue λ, then any scalar multiple αx is also an eigenvector of A with

the same eigenvalue, since A(αx) = αAx = αλx = λ(αx). More generally, any non-zero linear combination of

eigenvectors that share the same eigenvalue λ, will itself be an eigenvector with eigenvalue λ.
[5]

 Together with the

zero vector, the eigenvectors of A with the same eigenvalue form a linear subspace of the vector space called an

eigenspace, Eλ. In case of dim(Eλ) = 1, it is called an eigenline and λ is called a scaling factor.

Diagonalizable matrices can be decomposed into a direct sum of eigenspaces, as per the eigendecomposition of a

matrix. If a matrix is not diagonalizable, then it is called defective, and, while it cannot be decomposed into

eigenspaces, it can be decomposed into the more general concept of generalized eigenspaces, as discussed here.

Algebraic and geometric multiplicities

Given an n×n matrix A and an eigenvalue λi of this matrix, there are two numbers measuring, roughly speaking, the

number of eigenvectors belonging to λi. They are called multiplicities: the algebraic multiplicity of an eigenvalue is

defined as the multiplicity of the corresponding root of the characteristic polynomial. The geometric multiplicity of an

eigenvalue is defined as the dimension of the associated eigenspace, i.e. number of linearly independent eigenvectors

with that eigenvalue. Both algebraic and geometric multiplicity are integers between (including) 1 and n. The algebraic

multiplicity ni and geometric multiplicity mi may or may not be equal, but we always have mi ≤ ni. The simplest case

is of course when mi = ni = 1. The total number of linearly independent eigenvectors, !x, is given by summing the

geometric multiplicities

Over a complex vector space, the sum of the algebraic multiplicities will equal the dimension of the vector space, but

the sum of the geometric multiplicities may be smaller. In this case, it is possible that there may not be sufficient

eigenvectors to span the entire space – more formally, there is no basis of eigenvectors (an eigenbasis). A matrix is

diagonalizable by a suitable choice of coordinates if and only if there is an eigenbasis; if a matrix is not diagonalizable,

it is said to be defective. For defective matrices, the notion of eigenvector can be generalized to generalized

eigenvectors, and over an algebraically closed field a basis of generalized eigenvectors always exists, as follows from

Jordan form.

The eigenvectors corresponding to different eigenvalues are linearly independent, meaning, in particular, that in an

n-dimensional space the linear transformation A cannot have more than n eigenvalues (or eigenspaces).
[6]

 All

defective matrices have fewer than n distinct eigenvalues, but not all matrices with fewer than n distinct eigenvalues

are defective
[7]

 – for example, the identity matrix is diagonalizable (and indeed diagonal in any basis), but only has

the eigenvalue 1.
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Given an ordered choice of linearly independent eigenvectors, especially an eigenbasis, they can be indexed by

eigenvalues, i.e. using a double index, with xi,j being the j 
th
 eigenvector for the i 

th
 eigenvalue. The eigenvectors can

also be indexed using the simpler notation of a single index xk, with k = 1, 2, ... , !x.

Worked example

These concepts are explained for the matrix

The characteristic equation of this matrix reads

Calculating the determinant, this yields the quadratic equation

whose solutions (also called roots) are λ = 1 and λ = 3. The eigenvectors for the eigenvalue λ = 3 are determined by
using the eigenvalue equation, which in this case reads

The juxtaposition at the left hand side denotes matrix multiplication. Spelling this out, this equation comparing two

vectors is tantamount to a system of the following two linear equations:

Both equations reduce to the single linear equation x = y. That is to say, any vector of the form (x, y) with y = x is an

eigenvector to the eigenvalue λ = 3. However, the vector (0, 0) is excluded. A similar calculation shows that the

eigenvectors corresponding to the eigenvalue λ = 1, are given by non-zero vectors (x, y) such that y = −x.

Eigendecomposition

Main article: Eigendecomposition of a matrix

The spectral theorem for matrices can be stated as follows. Let A be a square n × n matrix. Let q1 ... qk be an

eigenvector basis, i.e. an indexed set of k linearly independent eigenvectors, where k is the dimension of the space

spanned by the eigenvectors of A. If k = n, then A can be written

where Q is the square n × n matrix whose i-th column is the basis eigenvector qi of A and Λ is the diagonal matrix

whose diagonal elements are the corresponding eigenvalues, i.e. Λii = λi.

Further properties

Let A be an n×n matrix with eigenvalues λi, . Then

Trace of A

.
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Determinant of A

.

Eigenvalues of Ak are 

These first three results follow by putting the matrix in upper-triangular form, in which case the eigenvalues are

on the diagonal and the trace and determinant are respectively the sum and product of the diagonal.

If A = AH, i.e., A is Hermitian, every eigenvalue is real.

Every eigenvalue of a Unitary matrix has absolute value | λ | = 1.

Examples in the plane

The following table presents some example transformations in the plane along with their 2×2 matrices, eigenvalues,

and eigenvectors.

horizontal shear scaling unequal scaling
counterclockwise 

by 

illustration

matrix

characteristic

equation
λ
2
 − 2λ+1 = (1 − λ)

2
 = 0 λ

2
 − 2λk + k

2
 = (λ - k)

2
 = 0 (λ − k1)(λ − k2) = 0 λ

2
 − 2λ cos φ + 1 = 0

eigenvalues

λi
λ1=1 λ1=k λ1 = k1, λ2 = k2 λ1,2 = cos φ ± 

i

algebraic and

geometric

multiplicities

n1 = 2, m1 = 1 n1 = 2, m1 = 2 n1 = m1 = 1, n2 = m2 = 1 n1 = m1 = 1, 

eigenvectors

Shear

Shear in the plane is a transformation in which all points along a given line remain fixed while other points are shifted

parallel to that line by a distance proportional to their perpendicular distance from the line.
[8]

 In the horizontal shear

depicted above, a point P of the plane moves parallel to the x-axis to the place P' so that its coordinate y does not

change while the x coordinate increments to become x' = x + k y, where k is called the shear factor. The shear angle φ

is determined by k = cot φ.

Applying repeatedly the shear transformation changes the direction of any vector in the plane closer and closer to the

direction of the eigenvector.
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Uniform scaling and reflection

Multiplying every vector with a constant real number k is represented by the diagonal matrix whose entries on the

diagonal are all equal to k. Mechanically, this corresponds to stretching a rubber sheet equally in all directions such as

a small area of the surface of an inflating balloon. All vectors originating at origin (i.e., the fixed point on the balloon

surface) are stretched equally with the same scaling factor k while preserving its original direction. Thus, every

non-zero vector is an eigenvector with eigenvalue k. Whether the transformation is stretching (elongation, extension,

inflation), or shrinking (compression, deflation) depends on the scaling factor: if k > 1, it is stretching; if 0 < k < 1, it is

shrinking. Negative values of k correspond to a reversal of direction, followed by a stretch or a shrink, depending on

the absolute value of k.

Unequal scaling

For a slightly more complicated example, consider a sheet that is stretched unequally in two perpendicular directions

along the coordinate axes, or, similarly, stretched in one direction, and shrunk in the other direction. In this case, there

are two different scaling factors: k1 for the scaling in direction x, and k2 for the scaling in direction y. If a given

eigenvalue is greater than 1, the vectors are stretched in the direction of the corresponding eigenvector; if less than 1,

they are shrunken in that direction. Negative eigenvalues correspond to reflections followed by a stretch or shrink. In

general, matrices that are diagonalizable over the real numbers represent scalings and reflections: the eigenvalues

represent the scaling factors (and appear as the diagonal terms), and the eigenvectors are the directions of the scalings.

The figure shows the case where k1 > 1 and 1 > k2 > 0. The rubber sheet is stretched along the x axis and
simultaneously shrunk along the y axis. After repeatedly applying this transformation of stretching/shrinking many

times, almost any vector on the surface of the rubber sheet will be oriented closer and closer to the direction of the x

axis (the direction of stretching). The exceptions are vectors along the y-axis, which will gradually shrink away to

nothing.

Rotation

For more details on this topic, see Rotation matrix.

A rotation in a plane is a transformation that describes motion of a vector, plane, coordinates, etc., around a fixed

point. Clearly, for rotations other than through 0° and 180°, every vector in the real plane will have its direction

changed, and thus there cannot be any eigenvectors. But this is not necessarily true if we consider the same matrix

over a complex vector space. The characteristic equation is a quadratic equation with discriminant D = 4 (cos
2
 φ − 1)

= − 4 sin
2
 φ, which is a negative number whenever φ is not equal to a multiple of 180°. A rotation of 0°, 360°, … is

just the identity transformation (a uniform scaling by +1), while a rotation of 180°, 540°, …, is a reflection (uniform

scaling by -1). Otherwise, as expected, there are no real eigenvalues or eigenvectors for rotation in the plane. Instead,

the eigenvalues are complex numbers in general. Although not diagonalizable over the reals, the rotation matrix is

diagonalizable over the complex numbers, and again the eigenvalues appear on the diagonal. Thus rotation matrices

acting on complex spaces can be thought of as scaling matrices, with complex scaling factors.

Calculation

The complexity of the problem for finding roots/eigenvalues of the characteristic polynomial increases rapidly with

increasing the degree of the polynomial (the dimension of the vector space). There are exact solutions for dimensions

below 5, but for dimensions greater than or equal to 5 there are generally no exact solutions and one has to resort to

numerical methods to find them approximately. Worse, this computational procedure can be very inaccurate in the

presence of round-off error, because the roots of a polynomial are an extremely sensitive function of the coefficients

(see Wilkinson's polynomial).
[9]
 Efficient, accurate methods to compute eigenvalues and eigenvectors of arbitrary

matrices were not known until the advent of the QR algorithm in 1961.
[9]

 For large Hermitian sparse matrices, the

Lanczos algorithm is one example of an efficient iterative method to compute eigenvalues and eigenvectors, among

several other possibilities.
[9]

History
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Eigenvalues are often introduced in the context of linear algebra or matrix theory. Historically, however, they arose in

the study of quadratic forms and differential equations.

Euler studied the rotational motion of a rigid body and discovered the importance of the principal axes. Lagrange

realized that the principal axes are the eigenvectors of the inertia matrix.
[10]

 In the early 19th century, Cauchy saw

how their work could be used to classify the quadric surfaces, and generalized it to arbitrary dimensions.
[11]

 Cauchy

also coined the term racine caractéristique (characteristic root) for what is now called eigenvalue; his term survives

in characteristic equation.
[12]

Fourier used the work of Laplace and Lagrange to solve the heat equation by separation of variables in his famous

1822 book Théorie analytique de la chaleur.
[13]

 Sturm developed Fourier's ideas further and brought them to the

attention of Cauchy, who combined them with his own ideas and arrived at the fact that real symmetric matrices have

real eigenvalues.
[11]

 This was extended by Hermite in 1855 to what are now called Hermitian matrices.
[12]

 Around

the same time, Brioschi proved that the eigenvalues of orthogonal matrices lie on the unit circle,
[11]

 and Clebsch

found the corresponding result for skew-symmetric matrices.
[12]

 Finally, Weierstrass clarified an important aspect in

the stability theory started by Laplace by realizing that defective matrices can cause instability.
[11]

In the meantime, Liouville studied eigenvalue problems similar to those of Sturm; the discipline that grew out of their

work is now called Sturm–Liouville theory.
[14]

 Schwarz studied the first eigenvalue of Laplace's equation on general

domains towards the end of the 19th century, while Poincaré studied Poisson's equation a few years later.
[15]

At the start of the 20th century, Hilbert studied the eigenvalues of integral operators by viewing the operators as

infinite matrices.
[16]

 He was the first to use the German word eigen to denote eigenvalues and eigenvectors in 1904,

though he may have been following a related usage by Helmholtz. For some time, the standard term in English was

"proper value", but the more distinctive term "eigenvalue" is standard today.
[17]

The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929, when Von Mises

published the power method. One of the most popular methods today, the QR algorithm, was proposed independently

by John G.F. Francis
[18]

 and Vera Kublanovskaya
[19]

 in 1961.
[20]

Generalizations

Left and right eigenvectors

The word eigenvector formally refers to the right eigenvector xR. It is defined by the above eigenvalue equation

and is the most commonly used eigenvector. However, the left eigenvector xL exists as well, and is defined by

Infinite-dimensional spaces and spectral theory

For more details on this topic, see Spectral theorem.

If the vector space is an infinite dimensional Banach space, the notion of eigenvalues can be generalized to the

concept of spectrum. The spectrum is the set of scalars λ for which (T − λI)
−1
 is not defined; that is, such that T − λI

has no bounded inverse.

Clearly if λ is an eigenvalue of T, λ is in the spectrum of T. In general, the converse is not true. There are operators on

Hilbert or Banach spaces which have no eigenvectors at all. This can be seen in the following example. The bilateral

shift on the Hilbert space ℓ 
2
(Z) (that is, the space of all sequences of scalars … a−1, a0, a1, a2, … such that
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converges) has no eigenvalue but does have spectral values.

In infinite-dimensional spaces, the spectrum of a bounded operator is always nonempty. This is also true for an

unbounded self adjoint operator. Via its spectral measures, the spectrum of any self adjoint operator, bounded or

otherwise, can be decomposed into absolutely continuous, pure point, and singular parts. (See Decomposition of

spectrum.)

The hydrogen atom is an example where both types of spectra appear. The eigenfunctions of the hydrogen atom

Hamiltonian are called eigenstates and are grouped into two categories. The bound states of the hydrogen atom

correspond to the discrete part of the spectrum (they have a discrete set of eigenvalues which can be computed by

Rydberg formula) while the ionization processes are described by the continuous part (the energy of the

collision/ionization is not quantized).

Eigenfunctions

Main article: Eigenfunction

A common example of such maps on infinite dimensional spaces are the action of differential operators on function

spaces. As an example, on the space of infinitely differentiable functions, the process of differentiation defines a

linear operator since

where f(t) and g(t) are differentiable functions, and a and b are constants.

The eigenvalue equation for linear differential operators is then a set of one or more differential equations. The

eigenvectors are commonly called eigenfunctions. The simplest case is the eigenvalue equation for differentiation of a

real valued function by a single real variable. We seek a function (equivalent to an infinite-dimensional vector) which,

when differentiated, yields a constant times the original function. In this case, the eigenvalue equation becomes the

linear differential equation

Here λ is the eigenvalue associated with the function, f(x). This eigenvalue equation has a solution for any value of λ.

If λ is zero, the solution is

where A is any constant; if λ is non-zero, the solution is the exponential function

If we expand our horizons to complex valued functions, the value of λ can be any complex number. The spectrum of

d/dt is therefore the whole complex plane. This is an example of a continuous spectrum.

Waves on a string
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The shape of a standing wave in a string fixed at

its boundaries is an example of an eigenfunction

of a differential operator. The admittable

eigenvalues are governed by the length of the

string and determine the frequency of

oscillation.

The displacement, h(x,t), of a stressed rope fixed at both ends, like
the vibrating strings of a string instrument, satisfies the wave equation

which is a linear partial differential equation, where c is the constant

wave speed. The normal method of solving such an equation is

separation of variables. If we assume that h can be written as the

product of the form X(x)T(t), we can form a pair of ordinary

differential equations:

 and 

Each of these is an eigenvalue equation (the unfamiliar form of the eigenvalue is chosen merely for convenience). For

any values of the eigenvalues, the eigenfunctions are given by

 and 

If we impose boundary conditions (that the ends of the string are fixed with X(x)=0 at x=0 and x=L, for example) we

can constrain the eigenvalues. For those boundary conditions, we find

, and so the phase angle 

and

Thus, the constant ω is constrained to take one of the values , where n is any integer. Thus the clamped

string supports a family of standing waves of the form

From the point of view of our musical instrument, the frequency  is the frequency of the nth harmonic, which is

called the (n-1)st overtone.

Associative algebras and representation theory

Main articles: Representation theory and Weight (representation theory)

More algebraically, rather than generalizing the vector space to an infinite dimensional space, one can generalize the

algebraic object that is acting on the space, replacing a single operator acting on a vector space with an algebra

representation – an associative algebra acting on a module. The study of such actions is the field of representation

theory. In order to understand these representations, one breaks them up into indecomposable representations, and, if

possible, into irreducible representations; these correspond respectively to generalized eigenspaces and eigenspaces,

or rather the indecomposable and irreducible components of these. While a single operator on a vector space can be

understood in terms of eigenvectors – 1-dimensional invariant subspaces – in general in representation theory the

building blocks (the irreducible representations) are higher-dimensional.

A closer analog of eigenvalues is given by the notion of a weight, with the analogs of eigenvectors and eigenspaces

being weight vectors and weight spaces. For an associative algebra A over a field F, the analog of an eigenvalue is a

one-dimensional representation  (a map of algebras; a linear functional that is also multiplicative), called

the weight, rather than a single scalar. A map of algebras is used because if a vector is a eigenvector for two elements

of an algebra, then it is also an eigenvector for any linear combination of these, and the eigenvalue is the

corresponding linear combination of the eigenvalues, and likewise for multiplication. This is related to the classical
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The wavefunctions associated with the bound

states of an electron in a hydrogen atom can be

seen as the eigenvectors of the hydrogen atom

Hamiltonian as well as of the angular

momentum operator. They are associated with

eigenvalues interpreted as their energies

(increasing downward: n=1,2,3,...) and angular

momentum (increasing across: s, p, d,...). The

illustration shows the square of the absolute

value of the wavefunctions. Brighter areas

correspond to higher probability density for a

position measurement. The center of each figure

is the atomic nucleus, a proton.

eigenvalue as follows: a single operator T corresponds to the algebra F[T] (the polynomials in T), and a map of

algebras  is determined by its value on the generator T; this value is the eigenvalue. A vector v on which

the algebra acts by this weight (i.e., by scalar multiplication, with the scalar determined by the weight) is called a

weight vector, and other concepts generalize similarly. The generalization of a diagonalizable matrix (having an

eigenbasis) is a weight module.

Because a weight is a map to a field, which is commutative, the map factors through the abelianization of the algebra

A – equivalently, it vanishes on the derived algebra – in terms of matrices, if v is a common eigenvector of operators T

and U, then TUv = UTv (because in both cases it is just multiplication by scalars), so common eigenvectors of an

algebra must be in the set on which the algebra acts commutatively (which is annihilated by the derived algebra). Thus

of central interest are the free commutative algebras, namely the polynomial algebras. In this particularly simple and

important case of the polynomial algebra  in a set of commuting matrices, a weight vector of this

algebra is a simultaneous eigenvector of the matrices, while a weight of this algebra is simply a k-tuple of scalars

 corresponding to the eigenvalue of each matrix, and hence geometrically to a point in k-space.

These weights – in particularly their geometry – are of central importance in understanding the representation theory

of Lie algebras, specifically the finite-dimensional representations of semisimple Lie algebras.

As an application of this geometry, given an algebra that is a quotient of a polynomial algebra on k generators, it

corresponds geometrically to an algebraic variety in k-dimensional space, and the weight must fall on the variety – i.e.,

it satisfies defining equations for the variety. This generalizes the fact that eigenvalues satisfy the characteristic

polynomial of a matrix in one variable.

Applications

Schrödinger equation

An example of an eigenvalue equation where the transformation T is

represented in terms of a differential operator is the time-independent

Schrödinger equation in quantum mechanics:

where H, the Hamiltonian, is a second-order differential operator and

ψE, the wavefunction, is one of its eigenfunctions corresponding to
the eigenvalue E, interpreted as its energy.

However, in the case where one is interested only in the bound state

solutions of the Schrödinger equation, one looks for ψE within the
space of square integrable functions. Since this space is a Hilbert space

with a well-defined scalar product, one can introduce a basis set in

which ψE and H can be represented as a one-dimensional array and a
matrix respectively. This allows one to represent the Schrödinger

equation in a matrix form.

Bra-ket notation is often used in this context. A vector, which

represents a state of the system, in the Hilbert space of square

integrable functions is represented by . In this notation, the

Schrödinger equation is:

where  is an eigenstate of H. It is a self adjoint operator, the

infinite dimensional analog of Hermitian matrices (see Observable). As

in the matrix case, in the equation above  is understood to be

the vector obtained by application of the transformation H to .

Molecular orbitals
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PCA of the multivariate Gaussian

distribution centered at (1,3) with a

standard deviation of 3 in roughly the

(0.878, 0.478) direction and of 1 in

the orthogonal direction.

In quantum mechanics, and in particular in atomic and molecular physics, within the Hartree–Fock theory, the atomic

and molecular orbitals can be defined by the eigenvectors of the Fock operator. The corresponding eigenvalues are

interpreted as ionization potentials via Koopmans' theorem. In this case, the term eigenvector is used in a somewhat

more general meaning, since the Fock operator is explicitly dependent on the orbitals and their eigenvalues. If one

wants to underline this aspect one speaks of nonlinear eigenvalue problem. Such equations are usually solved by an

iteration procedure, called in this case self-consistent field method. In quantum chemistry, one often represents the

Hartree–Fock equation in a non-orthogonal basis set. This particular representation is a generalized eigenvalue

problem called Roothaan equations.

Geology and glaciology

In geology, especially in the study of glacial till, eigenvectors and eigenvalues are used as a method by which a mass

of information of a clast fabric's constituents' orientation and dip can be summarized in a 3-D space by six numbers. In

the field, a geologist may collect such data for hundreds or thousands of clasts in a soil sample, which can only be

compared graphically such as in a Tri-Plot (Sneed and Folk) diagram,
[21][22]

 or as a Stereonet on a Wulff Net.
[23]

 The

output for the orientation tensor is in the three orthogonal (perpendicular) axes of space. Eigenvectors output from

programs such as Stereo32 
[24]

 are in the order E1 ≥ E2 ≥ E3, with E1 being the primary orientation of clast

orientation/dip, E2 being the secondary and E3 being the tertiary, in terms of strength. The clast orientation is defined

as the eigenvector, on a compass rose of 360°. Dip is measured as the eigenvalue, the modulus of the tensor: this is

valued from 0° (no dip) to 90° (vertical). The relative values of E1, E2, and E3 are dictated by the nature of the

sediment's fabric. If E1 = E2 = E3, the fabric is said to be isotropic. If E1 = E2 > E3 the fabric is planar. If

E1 > E2 > E3 the fabric is linear. See 'A Practical Guide to the Study of Glacial Sediments' by Benn & Evans,

2004.
[25]

Principal components analysis

Main article: Principal components analysis

See also: Positive semidefinite matrix and Factor analysis

The eigendecomposition of a symmetric positive semidefinite (PSD) matrix

yields an orthogonal basis of eigenvectors, each of which has a nonnegative

eigenvalue. The orthogonal decomposition of a PSD matrix is used in

multivariate analysis, where the sample covariance matrices are PSD. This

orthogonal decomposition is called principal components analysis (PCA) in

statistics. PCA studies linear relations among variables. PCA is performed on

the covariance matrix or the correlation matrix (in which each variable is

scaled to have its sample variance equal to one). For the covariance or

correlation matrix, the eigenvectors correspond to principal components and

the eigenvalues to the variance explained by the principal components.

Principal component analysis of the correlation matrix provides an

orthonormal eigen-basis for the space of the observed data: In this basis, the

largest eigenvalues correspond to the principal-components that are associated

with most of the covariability among a number of observed data.

Principal component analysis is used to study large data sets, such as those encountered in data mining, chemical

research, psychology, and in marketing. PCA is popular especially in psychology, in the field of psychometrics. In

Q-methodology, the eigenvalues of the correlation matrix determine the Q-methodologist's judgment of practical

significance (which differs from the statistical significance of hypothesis testing): The factors with eigenvalues greater

than 1.00 are considered to be practically significant, that is, as explaining an important amount of the variability in

the data, while eigenvalues less than 1.00 are considered practically insignificant, as explaining only a negligible

portion of the data variability. More generally, principal component analysis can be used as a method of factor

analysis in structural equation modeling.

Vibration analysis
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1st lateral bending (See vibration for

more types of vibration)

Eigenfaces as examples of

eigenvectors

Main article: Vibration

Eigenvalue problems occur naturally in the vibration analysis of mechanical

structures with many degrees of freedom. The eigenvalues are used to

determine the natural frequencies (or eigenfrequencies) of vibration, and the

eigenvectors determine the shapes of these vibrational modes. The

orthogonality properties of the eigenvectors allows decoupling of the

differential equations so that the system can be represented as linear

summation of the eigenvectors. The eigenvalue problem of complex structures

is often solved using finite element analysis.

Eigenfaces

Main article: Eigenfaces

In image processing, processed images of faces can be seen as vectors whose

components are the brightnesses of each pixel.
[26]

 The dimension of this vector

space is the number of pixels. The eigenvectors of the covariance matrix

associated with a large set of normalized pictures of faces are called eigenfaces;

this is an example of principal components analysis. They are very useful for

expressing any face image as a linear combination of some of them. In the facial

recognition branch of biometrics, eigenfaces provide a means of applying data

compression to faces for identification purposes. Research related to eigen vision

systems determining hand gestures has also been made.

Similar to this concept, eigenvoices represent the general direction of variability

in human pronunciations of a particular utterance, such as a word in a language.

Based on a linear combination of such eigenvoices, a new voice pronunciation of

the word can be constructed. These concepts have been found useful in automatic

speech recognition systems, for speaker adaptation.

Tensor of inertia

In mechanics, the eigenvectors of the inertia tensor define the principal axes of a rigid body. The tensor of inertia is a

key quantity required in order to determine the rotation of a rigid body around its center of mass.

Stress tensor

In solid mechanics, the stress tensor is symmetric and so can be decomposed into a diagonal tensor with the

eigenvalues on the diagonal and eigenvectors as a basis. Because it is diagonal, in this orientation, the stress tensor has

no shear components; the components it does have are the principal components.

Eigenvalues of a graph

In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix A, or

(increasingly) of the graph's Laplacian matrix, which is either T−A (sometimes called the Combinatorial Laplacian) or

I−T
−1/2

AT
−1/2

 (sometimes called the Normalized Laplacian), where T is a diagonal matrix with Tv,v equal to the

degree of vertex v, and in T
−1/2

, the v
th
 diagonal entry is deg(v)

−1/2
. The k

th
 principal eigenvector of a graph is defined

as either the eigenvector corresponding to the k
th
 largest or k

th
 smallest eigenvalue of the Laplacian. The first principal

eigenvector of the graph is also referred to merely as the principal eigenvector.

The principal eigenvector is used to measure the centrality of its vertices. An example is Google's PageRank

algorithm. The principal eigenvector of a modified adjacency matrix of the World Wide Web graph gives the page

ranks as its components. This vector corresponds to the stationary distribution of the Markov chain represented by the

row-normalized adjacency matrix; however, the adjacency matrix must first be modified to ensure a stationary

distribution exists. The second smallest eigenvector can be used to partition the graph into clusters, via spectral

clustering. Other methods are also available for clustering.
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See also

Nonlinear eigenproblem

Quadratic eigenvalue problem

Introduction to eigenstates

Eigenplane

Jordan normal form
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External links

What are Eigen Values? (http://www.physlink.com/education/AskExperts/ae520.cfm) — non-technical

introduction from PhysLink.com's "Ask the Experts"

Introduction to Eigen Vectors and Eigen Values (http://khanexercises.appspot.com/video?v=PhfbEr2btGQ) --

lecture from Kahn Academy

Theory

Eigenvalue (of a matrix) (http://planetmath.org/?op=getobj&from=objects&id=4397) on PlanetMath

Eigenvector (http://mathworld.wolfram.com/Eigenvector.html) — Wolfram MathWorld

Eigen Vector Examination working applet (http://ocw.mit.edu/ans7870/18/18.06/javademo/Eigen/)

Same Eigen Vector Examination as above in a Flash demo with sound (http://web.mit.edu/18.06/www/Demos

/eigen-applet-all/eigen_sound_all.html)

Computation of Eigenvalues (http://www.sosmath.com/matrix/eigen1/eigen1.html)

Numerical solution of eigenvalue problems (http://www.cs.utk.edu/~dongarra/etemplates/index.html) Edited by

Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst

Eigenvalues and Eigenvectors on the Ask Dr. Math forums: [1] (http://mathforum.org/library/drmath

/view/55483.html) , [2] (http://mathforum.org/library/drmath/view/51989.html)

Algorithms

ARPACK (http://www.caam.rice.edu/software/ARPACK/) is a collection of FORTRAN subroutines for solving

large scale (sparse) eigenproblems.

IRBLEIGS (http://www.math.uri.edu/~jbaglama/) , has MATLAB code with similar capabilities to ARPACK.

(See this paper (http://www.math.uri.edu/~jbaglama/papers/paper10.pdf) for a comparison between IRBLEIGS

and ARPACK.)

LAPACK (http://netlib.org/lapack/) is a collection of FORTRAN subroutines for solving dense linear algebra

problems

ALGLIB (http://www.alglib.net/eigen/) includes a partial port of the LAPACK to C++, C#, Delphi, etc.

Vanderplaats Research and Development (http://www.vrand.com) - Provides the SMS (http://www.vrand.com)

eigenvalue solver for Structural Finite Element. The solver is in the GE!ESIS (http://www.vrand.com

/Genesis.html) program as well as other commercial programs. SMS can be easily use with MSC.Nastran or

NX/Nastran via DMAPs.

Online calculators

arndt-bruenner.de (http://www.arndt-bruenner.de/mathe/scripts/engl_eigenwert.htm)

bluebit.gr (http://www.bluebit.gr/matrix-calculator/)

wims.unice.fr (http://wims.unice.fr

/wims/wims.cgi?session=6S051ABAFA.2&+lang=en&+module=tool%2Flinear%2Fmatrix.en)
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